Por el Tamaño de las Patìculas


Se ha dicho que el concreto hidráulico es la aglutinación mediante una pasta de cemento, de un conjunto de partículas de roca cuyas dimensiones comprenden desde micras hasta centímetros. Para el caso del concreto convencional, en que se utilizan mezclas de consistencia plástica, la experiencia ha demostrado la conveniencia que dentro de ese intervalo dimensional se hallen representados todos los tamaños de partículas y que, una vez que se ha establecido mediante pruebas la composición del concreto con determinados agregados, debe mantenerse razonablemente uniforme esta composición durante la producción, a fin de que las características y propiedades del concreto resulten dentro de un marco de variación predecible.
Para mantener una adecuada uniformidad en la granulometría de los agregados durante su utilización en la elaboración del concreto, el procedimiento consiste en dividirlos en fracciones que se dosifican individualmente. Puesto que el grado de uniformidad asequible está en función del intervalo abarcado por cada fracción, lo deseable es dividir el conjunto de partículas en el mayor número de fracciones que sea técnica, económica y prácticamente factible.
Granulometrìa

Rocas Metamòrficas


Las rocas metamórficas se forman como consecuencia de procesos que involucran altas presiones y temperaturas y de fuerzas que se generan en la corteza terrestre, cuyos efectos pueden manifestarse sobre rocas ígneas, sedimentarias e inclusive metamórficas previamente formadas. Tales efectos se traducen en alteraciones de la textura, estructura y composición mineralógica, e incluso química, de las rocas originales.
Las rocas metamórficas resultantes pueden ser de estructura masiva, pero con mayor frecuencia presentan estructura laminar, o foliada, de manera que al desintegrarse pueden producir fragmentos con tendencia tabular, de acuerdo con su grado de foliación.
Roca  Metamòrfica

Rocas Sedimentarias


Las rocas sedimentarias, como su nombre lo indica, son el resultado del proceso de transporte, depósito y eventual litificación, sobre la corteza terrestre, de los productos de intemperismo y erosión de otras rocas preexistentes; proceso que frecuentemente se produce bajo el agua, pero también puede ocurrir en el ambiente atmosférico. Su grado de consolidación puede ser muy variable, desde un estado muy compacto en antiguos sedimentos, hasta un estado prácticamente sin consolidar en sedimentos cuyo proceso es relativamente reciente o no existen condiciones favorables para su consolidación. De acuerdo con el tamaño de sus partículas, estos sedimentos no consolidados se identifican como gravas, arenas, limos y arcillas.

Rocas Sedimentarias

Clasificaciòn de Peso Normal


Las principales características que sirven a tal fin, se indican a continuación:

Por el origen de las rocas
Una primera razón para establecer diferencia entre los agregados, se refiere al distinto origen de las rocas que los constituyen. Por su génesis geológica, las rocas se dividen en ígneas, sedimentarias y metamórficas, las que a su vez se subdividen y clasifican en diversos tipos de acuerdo con sus características textuales y mineralógicas.


Las rocas ígneas, o endógenas, proceden de la solidificación por enfriamiento la materia fundida (magma) y pueden dividirse en dos grupos: las rocas intrusivas, o plutónicas, que provienen del enfriamiento lento que ocurre inmediatamente abajo de la superficie terrestre, y las extruidas, o volcánicas, que se producen por el enfriamiento rápido del material que es expulsado en las erupciones volcánicas (derrames lávicos y eventos piroclásticos). Las rocas ígneas se clasifican por su textura, estructura y composición minera lógica y química, de igual modo que las otras clases de rocas.

Rocas Igneas

Clasificacion de los Agregados de Peso Normal


Los agregados de peso normal comúnmente proceden de la desintegración, por causas naturales o medios artificiales, de rocas con peso especifico entre 2.4 y 2.8, aproximadamente; de manera que al utilizarlos se obtienen concretos con peso volumétrico, en estado fresco, en el intervalo aproximado de 2200 a 2550 kg./m3. Existen diversas características en los agregados, cuyas diferencias permiten clasificarlos e identificarlos.

Agregados de Peso Normal


Todo el concreto que se utiliza es de peso normal, con base en esa consideración, so1o se aborda aquí el tema de los agregados denominados de peso normal, porque son los que se utilizan en la elaboración.
Cada una de estas variedades del concreto de peso normal tiene, en algún aspecto, requisitos propios para sus agregados; sin embargo, los requisitos básicos y más generales son los correspondientes a los agregados para el concreto convencional, porque abarcan el campo de aplicación de mayor amplitud.
Además, los aspectos que en la Sección 2 se mencionan acerca del comportamiento geológico del concreto, tanto en estado fresco como endurecido, son más bien aplicables al concreto convencional porque se elabora con pastas de cemento de consistencia plástica. Por todo ello, conviene centrar el interés en los agregados de peso normal destinados al, concreto convencional.

Agregados para Concretos de Diverso Peso Unitario


Una característica importante del concreto es su peso unitario, porque es índice de propiedades que a su vez influyen decisivamente en el empleo que se le da. Como es evidente, dicha característica del concreto depende principalmente del peso especifico de los agregados que lo integran.
Si se representa el nivel aproximado que ocupan en la escala de pesos unitarios, cinco diferentes clases de concreto cuyas designaciones, pesos unitarios y usos comunes se indican a continuación.
Esta variedad de usos da lugar a una primera clasificación de los agregados de acuerdo con su peso específico y correspondiente aptitud para producir concretos de las clases indicadas.
Procede hacer notar que tanto los concretos ligeros como el concreto pesado, requieren de agregados especiales y tienen usos específicos que resultan fuera del campo de aplicación que se considera convencional, en el que casi todo el concreto que se utiliza es de peso normal.

Otras Fuentes de Suministro de Agua


Hay otras fuentes de suministro de agua para elaborar el concreto en sitios alejados de los centros de población, como son los pozos, manantiales corrientes superficiales (arroyos y ríos), almacenamientos naturales (lagos lagunas) y almacenamientos creados artificialmente (vasos de presas). Salvo que existan antecedentes de uso del agua en la fabricación de concreto con buenos resultados, debe verificarse invariablemente su calidad antes d emplearla.

Manantiales

 

En cuanto al agua de mar, su principal inconveniente al ser juzgada como agua de mezclado para concreto, consiste en su elevado contenido de cloruros (más de 20000 ppm) que la convierten en un medio altamente corrosivo para e acero de refuerzo, y esto la hace inaceptable para su empleo en el concreto reforzado. No obstante, en determinados casos se ha llegado a emplear agua de mar para la elaboración de concreto destinado a elementos no reforzados.

Agua de Mar

 

Verificacion de Calidad


La verificación de la calidad del agua de uso previsto para elaborar el concreto, debe ser una práctica obligatoria antes de iniciar la construcción de obras importantes, como es el caso de las centrales para generar energía eléctrica. Sin embargo, puede permitirse que esta verificación se omita en las siguientes condiciones:
  • El agua procede de la red local de suministro para uso doméstico y no se le aprecia olor, color ni sabor; no obstante que no posea antecedentes de uso en la fabricación de concreto.
  • El agua procede de cualquier otra fuente de suministro que cuenta con antecedentes de uso en la fabricación de concreto con buenos resultados, y no se le aprecia olor, color ni sabor
  • Por el contrario, la verificación de calidad del agua, previa a su empleo en la fabricación de concreto, debe ser un requisito ineludible en los siguientes casos: 
  • El agua procede de la red local de suministro para uso doméstico y, aunque posee antecedentes de U80 en la fabricación de concreto, se le aprecia cierto olor, color o sabor.
  •  El agua procede de cualquier fuente de suministro sin antecedentes de uso en la fabricación de concreto, aunque no manifieste olor, color ni sabor.
Cuando la obra se localiza en las inmediaciones de un centro de población, es muy probable que exista abastecimiento de agua en la localidad, del cual pueda disponerse para fabricar el concreto. Al referirse a esta red de suministro público, es pertinente distinguir entre el agua para uso doméstico y para uso industrial.
La primera por lo general reúne condiciones físico-químicas de potabilidad, salvo eventuales fallas en el aspecto bacteriológico que pueden hacerla impropia para el consumo humano, pero no afectan al concreto.
El agua para uso industrial por lo común no es potable, no sólo en el aspecto bacteriológico sino también en el aspecto físico-químico, pues frecuentemente proviene del tratamiento de aguas negras o es agua reciclada de procesos industriales, por lo cual puede contener sustancias dañinas al concreto. Por tal motivo, siempre es necesario verificar la calidad del agua de uso industrial, a menos que tenga antecedentes de uso con buen éxito en la fabricación de concreto.

Requisitos de calidad


Los requisitos de calidad del agua de mezclado para concreto no tienen ninguna relación obligada con el aspecto bacteriológico (como es el caso de las aguas potables), sino que básicamente se refieren a sus características físico-químicas ya sus efectos sobre el comportamiento y las propiedades del concreto.

Características físico-químicas
Refiriéndose a las características físico-químicas del agua para concreto, no parece haber consenso general en cuanto a las limitaciones que deben imponerse a las substancias e impurezas cuya presencia es relativamente frecuente, como puede ser el caso de algunas sales inorgánicas (cloruros, sulfatos), sólidos en suspensión, materia orgánica, di óxido de carbono disuelto, etc. Sin embargo, en lo que sí parece haber acuerdo es que no debe tolerarse la presencia de substancias que son francamente dañinas, como grasas, aceites, azúcares y ácidos, por ejemplo. La presencia de alguna de estas substancias, que por lo demás no es común, debe tomarse como un síntoma de contaminación que requiere eliminarse antes de considerar la posibilidad de emplear el agua.

Limo

Agua para Concreto


Usos del Agua
En relación con su empleo en el concreto, el agua tiene dos diferentes aplicaciones: como ingrediente en la elaboración de las mezclas y como media fe curado de las estructuras recién construidas. En el primer caso es de lS0 interno como agua de mezclado, y en el segundo se emplea exteriormente cuando el concreto se cura con agua.




Como componente del concreto convencional, el agua suele representar aproximadamente entre 10 y 25 por ciento del volumen del concreto recién mezclado, dependiendo del tamaño máximo de agregado que se utilice y del revenimiento que se requiera. Esto le concede una influencia importante a la calidad del agua de mezclado en el comportamiento y las propiedades del concreto, pues cualquier substancia dañina que contenga, aún en proporciones reducidas, puede tener efectos adversos significativos en el concreto.

Estabilidad química


De tiempo atrás se reconoce que ningún arqueado es completamente inerte al permanecer en contacto con la pasta de cemento, debido a los diversos procesos y reacciones químicas que en distinto grado suelen producirse entre ambos. Algunas de estas reacciones son benéficas porque, contribuyen a la adhesión del agregado con la pasta, mejorando las propiedades mecánicas del concreto, pero otras son detrimentales porque generan expansiones internas que causan daño y pueden terminar por destruir al concreto.
Las principales reacciones químicas que ocurren en el concreto tienen un participante común representado por los álcalis, óxidos de sodio y de potasio, que normalmente proceden del cemento pero eventualmente pueden provenir también de algunos agregados.
Por tal motivo, estas reacciones se designan genéricamente como ácali-agregado, y a la fecha se le conocen tres modalidades que se distinguen por la naturaleza de las rocas y minerales que comparten el fenómeno:
Reacciones deletéreas
  • Alcali-sílice
  • Alcali-agregado Alcali-silicato
  • Alcali-carbonato

Estabilidad volumétrica


Una característica indeseable del concreto hidráulico es su predisposición a manifestar cambios volumétricos, particularmente contracciones, que suelen causar agrietamientos en las estructuras. Para corregir este inconveniente, en casos que lo ameritan, se han desarrollado los cementos expansivos que se utilizan en los concretos de contracción compensada (22), pero que todavía no se producen localmente.

concreto hidráulico

Las soluciones alcalinas


Soluciones alcalinas:
  • Hidróxido de sodio > 20\ Moderado
  • Hidróxido de sodio 10-20\, hipoclorito de sodio Lento
  • Hidróxido de sodio < 10\, hidróxido de amonio Despreciable
Soluciones salinas:
  • Cloruro de aluminio Rápido
  • Nitrato de amonio, sulfato de amonio, sulfato de sodio, sulfato de magnesio, sulfato de calcio Moderado
  • Cloruro de amonio, cloruro de magnesio, cianuro de sodio Lento
  • Cloruro de calcio, cloruro de sodio, nitrato de zinc, cromato de sodio Despreciable
Diversas:
  • Bromo (gas), solución de sulfito Moderado
  • Cloro (gas), agua de mar, agua blanda - Lento
  • Amonio (liquido) Despreciable
Las soluciones alcalinas pueden ocasionar reacciones del tipo álcaliagregado, en concretos con agregados reactivos con los álcalis.
En cuanto a la selección del cemento apropiado, se sabe que el aluminato tricálcio (C3A) es el compuesto del cemento portland que puede reaccionar con los sulfatos externos para dar Bulfoaluminato de calcio hidratado cuya formación gradual se acompaña de expansiones que desintegran paulatinamente el concreto.

 

Resistencia al ataque de los sulfatos


El concreto de cemento portland es susceptible de sufrir daños en distinto grado al prestar servicio en contacto con diversas substancias químicas de carácter ácido o alcalino.
Ácidos inorgánicos:
  • Clorhídrico, fluorhídrico, nítrico, sulfúrico Rápido
  • Fosfórico Moderado
  • Carbónico Lento
Ácidos orgánicos:
  • Acético, fórmico, lácteo Rápido
  • Tánico Moderado
  • Oxálico, tartárico Despreciable

Generación de calor


En el curso de la reacción del cemento con el agua, o hidratación del cemento, se produce desprendimiento de calor porque se trata de una reacción de carácter exotérmico. Si el calor que se genera en el seno de la masa de concreto no se disipa con la misma rapidez con que se produce, queda un remanente que al acumularse incrementa la temperatura de la masa.
El calentamiento del concreto lo expande, de manera que posteriormente al enfriarse sufre una contracción, normalmente restringida, que genera esfuerzos de tensión capaces de agrietarlo. La posibilidad de que esto ocurra tiende a ser mayor a medida que aumenta la cantidad y velocidad de generación de calor y que disminuyen las facilidades para su pronta disipación. Es decir, el riesgo de agrietamiento de origen térmico se incrementa cuando se emplea un cemento de alta y rápida hidratación, como el tipo III, y las estructuras tienen gran espesor. Obviamente, la simultaneidad de ambos factores representa las condiciones pésimas en este aspecto.

agrietamiento por usar cemento
de alta y rápida hidratación.

Tipo de cemento Portland


De acuerdo con las tendencias mostradas puede considerarse que, para obtener el beneficio adecuado de resistencia de cada tipo y clase de cemento en función de sus características, lo conveniente es especificar la resistencia de proyecto del concreto a edades que sean congruentes con dichas características. Consecuentemente, estas edades pueden ser como sigue:
Tipo de cemento que su edad recomendable para especificar emplea en el concreto la resistencia de proyecto.
Portland III 14 ó 28 días
Portland I, II y V 28 ó 90 días
Portland-puzolana 90 días, o más

En ausencia de cemento tipo III, cuya disponibilidad en el mercado local es limitada, puede emplearse cemento tipo I junto con un aditivo acelerante, previa verificación de su compatibilidad y efectos en el concreto, tanto en lo que se refiere a su adquisición de resistencia como a la durabilidad potencial de la estructura.

cementos portland-puzolana



En cuanto a los cementos portland-puzolana, su adquisición inicial de resistencia suele ser un tanto lenta debido a que las puzolanas no aportan prácticamente resistencia a edad temprana. Por otra parte, resulta difícil predecir la evolución de resistencia de estos cementos porque hay varios factores que influyen y no siempre se conocen, como son el tipo de clinker con que se elaboran y la naturaleza, calidad y proporción de su componente puzolánico.

Clinker


De acuerdo con las tendencias mostradas puede considerarse que, para obtener el beneficio adecuado de resistencia de cada tipo y clase de cemento en función de sus características, lo conveniente es especificar la resistencia de proyecto del concreto a edades que sean congruentes con dichas características.

Efectos en el concreto endurecido

Adquisición de resistencia mecánica

Conforme se expuso previamente, la velocidad de hidratación y adquisición de resistencia de los diversos tipos de cemento portland depende básicamente de la composición química del clinker y de la finura de molienda. De esta manera, un cemento con alto contenido de silicato tricálcico (C3S) y elevada finura puede producir mayor resistencia a corto plazo, y tal es el caso del cemento tipo III de alta resistencia rápida.


En el extremo opuesto, un cemento con alto contenido de silicato dicálcico (C2S) y finura moderada debe hacer más lenta la adquisición inicial de resistencia y consecuente generación de calor en el concreto, siendo este el caso del cemento tipo IV. Dentro de estos limites de comportamiento, en cuanto a la forma de adquirir resistencia, se ubican los otros tipos de cemento portland.


Asentamiento y sangrado


En cuanto el concreto queda en reposo, después de colocarlo y compactarlo dentro del espacio cimbrado, se inicia un proceso natural mediante el cual los componentes más pesados (cemento y agregados) tienden a descender en tanto que el agua, componente menos denso, tiende a subir.

A estos fenómenos simultáneos se les llama respectivamente asentamiento y sangrado, y cuando se producen en exceso se les considera indeseables porque provocan cierta estratificación en la masa de concreto, según la cual se forma en la superficie superior una capa menos resistente y durable por su mayor concentración de agua. Esta circunstancia resulta particularmente inconveniente en el caso de pavimentos de
concreto y de algunas estructuras hidráulicas cuya capa superior debe ser apta para resistir los efectos de la abrasión mecánica e hidráulica.

Los principales factores que influyen en el asentamiento y el sangrado del concreto son de orden intrínseco, y se relacionan con exceso de fluidez en las mezclas, características deficientes de forma, textura superficial y granulometría en los agregados (particularmente falta de finos en la arena) y reducido consumo unitario y/o baja finura en el cementante.Consecuentemente, las medidas aplicables para moderar el asentamiento y el sangrado consisten en inhibir la presencia de dichos factores, para lo cual es pertinente.